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Whose dwelling is the light of setting suns,

And the round ocean and the living air,

And the blue sky, and in the mind of man:

A motion and a spirit, that impels

All thinking things, all objects of all thought,

And rolls through all things.

– William Wordsworth
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Web Resources

The book’s Web site (http://www.macmillanhighered.com/physicalmodels1e)
contains links to the following resources:

• The Student’s Guide contains an introduction to some computer math systems, and some
guided computer laboratory exercises.

• Datasets contains datasets that are used in the problems. In the text, these are cited like
this: Dataset 1, with numbers keyed to the list on the Web site.

• Media gives links to external media (graphics, audio, and video). In the text, these are
cited like this: Media 2, with numbers keyed to the list on the Web site.

• Finally, Errata is self-explanatory.
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To the Student

Learn from science that you must doubt the experts.

—Richard Feynman

This is a book about physical models of living systems. As you work through it, you’ll gain
some skills needed to create such models for yourself. You’ll also become better able to assess
scientific claims without having to trust the experts.

The living systems we’ll study range in scale from single macromolecules all the way up
to complete organisms. At every level of organization, the degree of inherent complexity may
at first seem overwhelming, if you are more accustomed to studying physics. For example, the
dance of molecules needed for even a single cell to make a decision makes Isaac Newton’s
equation for the Moon’s orbit look like child’s play. And yet, the Moon’s motion, too, is
complex when we look in detail—there are tidal interactions, mode locking, precession, and
so on. To study any complex system, we must first make it manageable by adopting a physical

model, a set of idealizations that focus our attention on the most important features.
Physical models also generally exploit analogies to other systems, which may already be

better understood than the one under study. It’s amazing how a handful of basic concepts can
be used to understand myriad problems at all levels, in both life science and physical science.

Physical modeling seeks to account for experimental data quantitatively. The point is
not just to summarize the data succinctly, but also to shed light on underlying mechanisms
by testing the different predictions made by various competing models. The reason for
insisting on quantitative prediction is that often we can think up a cartoon, either as an
actual sketch or in words, that sounds reasonable but fails quantitatively. If, on the contrary,
a model’s numerical predictions are found to be confirmed in detail, then this is unlikely to
be a fluke. Sometimes the predictions have a definite character, stating what should happen
every time; such models can be tested in a single experimental trial. More commonly,
however, the output of a model is probabilistic in character. This book will develop some of
the key ideas of probability, to enable us to make precise statements about the predictions
of models and how well they are obeyed by real data.

Jump to Contents Jump to Index xix
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xx To the Student

Perhaps most crucially in practice, a good model not only guides our interpretation
of the data we’ve got, but also suggests what new data to go out and get next. For example,
it may suggest what quantitative, physical intervention to apply when taking those data, in
order to probe the model for weaknesses. If weaknesses are found, a physical model may
suggest how to improve it by accounting for more aspects of the system, or treating them
more realistically. A model that survives enough attempts at falsification eventually earns
the label “promising.” It may even one day be “accepted.”

This book will show you some examples of the modeling process at work. In some cases,
physical modeling of quantitative data has allowed scientists to deduce mechanisms whose
key molecular actors were at the time unsuspected. These case studies are worth studying,
so that you’ll be ready to operate in this mode when it’s time to make your own discoveries.

Skills

Science is not just a pile of facts for you to memorize. Certainly you need to know many
facts, and this book will supply some as background to the case studies. But you also need
skills. Skills cannot be gained just by reading through this (or any) book. Instead you’ll need
to work through at least some of the exercises, both those at the ends of chapters and others
sprinkled throughout the text.

Specifically, this book emphasizes

• Model construction skills: It’s important to find an appropriate level of description and then
write formulas that make sense at that level. (Is randomness likely to be an essential feature
of this system? Does the proposed model check out at the level of dimensional analysis?)
When reading others’ work, too, it’s important to be able to grasp what assumptions their
model embodies, what approximations are being made, and so on.

• Interconnection skills: Physical models can bridge topics that are not normally discussed
together, by uncovering a hidden similarity. Many big advances in science came about
when someone found an analogy of this sort.

• Critical skills: Sometimes a beloved physical model turns out to be . . . wrong. Aristotle
taught that the main function of the brain was to cool the blood. To evaluate more modern
hypotheses, you generally need to understand how raw data can give us information, and
then understanding.

• Computer skills: Especially when studying biological systems, it’s usually necessary to run
many trials, each of which will give slightly different results. The experimental data very
quickly outstrip our abilities to handle them by using the analytical tools taught in math
classes. Not very long ago, a book like this one would have to content itself with telling you
things that faraway people had done; you couldn’t do the actual analysis yourself, because
it was too difficult to make computers do anything. Today you can do industrial-strength
analysis on any personal computer.

• Communication skills: The biggest discovery is of little use until it makes it all the way into
another person’s brain. For this to happen reliably, you need to sharpen some communica-
tion skills. So when writing up your answers to the problems in this book, imagine that you
are preparing a report for peer review by a skeptical reader. Can you take another few min-
utes to make it easier to figure out what you did and why? Can you label graph axes better,
add comments to your code for readability, or justify a step? Can you anticipate objections?

You’ll need skills like these for reading primary research literature, for interpreting your own
data when you do experiments, and even for evaluating the many statistical and pseudosta-
tistical claims you read in the newspapers.
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To the Student xxi

One more skill deserves separate mention. Some of the book’s problems may sound
suspiciously vague, for example,“Comment on . . . .” They are intentionally written to make
you ask, “What is interesting and worthy of comment here?” There are multiple “right”
answers, because there may be more than one interesting thing to say. In your own scientific
research, nobody will tell you the questions. So it’s good to get the habit of asking yourself
such things.

Acquiring these skills can be empowering. For instance, some of the most interesting
graphs in this book do not actually appear anywhere. You will create them yourself, starting
from data on the companion Web site.

What computers can do for you

A model begins in your mind as a proposed mechanism to account for some observations.
You may represent those ideas by sketching a diagram on paper. Such diagrams can help
you to think clearly about your model, explain it to others, and begin making testable
experimental predictions.

Despite the usefulness of such traditional representations, generally you must also carry
out some calculational steps before you get predictions that are detailed enough to test the
model. Sometimes these steps are easy enough to do with pencil, paper, and a calculator.
More often, however, at some point you will need an extremely fast and accurate assistant.
Your computer can play this role.

You may need a computer because your model makes a statistical prediction, and
a large amount of experimental data is needed to test it. Or perhaps there are a large
number of entities participating in your mechanism, leading to long calculations. Sometimes
testing the model involves simulating the system, including any random elements it contains;
sometimes the simulation must be run many times, each time with different values of some
unknown parameters, in order to find the values that best describe the observed behavior.
Computers can do all these things very rapidly.

To compute responsibly, you also need some insight into what’s going on under the
hood. Sometimes the key is to write your own simple analysis code from scratch. Many of
the exercises in this book ask you to practice this skill.

Finally, you will need to understand your results, and communicate them to others.
Data visualization is the craft of representing quantitative information in ways that are
meaningful, and honest. From the simplest xy graph to the fanciest interactive 3D image,
computers have transformed data visualization, making it faster and easier than ever before.

This book does not include any chapters explicitly about computer programming or
data visualization. The Student’s Guide contains a brief introduction; your instructor can
help you find other resources appropriate for the platform you’ll be using.

What computers can’t do for you

Computers are not skilled at formulating imaginative models in the first place. They do
not have intuitions, based on analogies to past experience, that help them to identify the
important players and their interactions. They don’t know what sorts of predictions can be
readily measured in the lab. They cannot help you choose which mode of visualization will
communicate your results best.

Above all, a computer doesn’t know whether it’s appropriate to use a computer for any
phase of a calculation, or whether on the contrary you would be better off with pencil and
paper. Nor can it tell you that certain styles of visualization are misleading or cluttered with
irrelevant information. Those high-level insights are your job.
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xxii To the Student

Structure and features

• Every chapter contains “Your Turn” questions. Generally these are short and easy (though
not always). Beyond these explicit questions, however, most of the formulas are conse-
quences of something said previously, which you should derive yourself. Doing so will
greatly improve your understanding of the material—and your fluency when it’s time to
write an exam.

• Most chapters end with a “Track 2” section. These are generally for advanced students;
some of them assume more background knowledge than the main, “Track 1,” material.
(Others just go into greater detail.) Similarly, there are Track 2 footnotes and homework

problems, marked with the glyph .
• Appendix A summarizes mathematical notation and key symbols that are used consis-

tently throughout the book. Appendix B discusses some useful tools for solving problems.
Appendix C gathers a few constants of Nature for reference.

• Many equations and key ideas are set off and numbered for reference. The notations
“Equation x.y” and “Idea x.y” both refer to the same numbered series.

• When a distant figure gets cited, you may or may not need to flip back to see it. To help
you decide, many figure references are accompanied by an iconified version of the cited
figure in the margin.

Other books

The goal of this book is to help you to teach yourself some of the skills and frameworks
you will need in order to become a scientist, in the context of physical models of living
systems. A companion book introduces a different slice through the subject (Nelson, 2014),
including mechanics and fluid mechanics, entropy and entropic forces, bioelectricity and
neural impulses, and mechanochemical energy transduction.

Many other books instead attempt a more complete coverage of the field of biophysics,
and would make excellent complements to this one. A few recent examples include
General: Ahlborn, 2004; Franklin et al., 2010; Nordlund, 2011.
Cell biology/biochemistry background: Alberts et al., 2014; Berg et al., 2012; Karp, 2013; Lodish
et al., 2012.
Medicine/physiology: Amador Kane, 2009; Dillon, 2012; Herman, 2007; Hobbie & Roth,
2007; McCall, 2010.
Networks: Alon, 2006; Cosentino & Bates, 2012; Vecchio & Murray, 2014; Voit, 2013.
Mathematical background: Otto & Day, 2007; Shankar, 1995.
Probability in biology and physics: Denny & Gaines, 2000; Linden et al., 2014.
Cell and molecular biophysics: Boal, 2012; Phillips et al., 2012; Schiessel, 2013.
Biophysical chemistry: Atkins & de Paula, 2011; Dill & Bromberg, 2010.
Experimental methods: Leake, 2013; Nadeau, 2012.
Computer methods: Computation: DeVries & Hasbun, 2011; Newman, 2013. Other com-
puter skills: Haddock & Dunn, 2011.

Finally, no book can be as up-to-date as the resources available online. Generic sources
such as Wikipedia contain many helpful articles, but you may also want to consult
http://bionumbers.hms.harvard.edu/ for specific numerical values, so often needed
when constructing physical models of living systems.
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Physicist: “I want to study the brain. Tell me something helpful.”

Biologist: “Well, first of all, the brain has two sides . . . .”

Physicist: “Stop! You’ve told me too much!”

—V. Adrian Parsegian

This book is the text for a course that I have taught for several years to undergraduates at
the University of Pennsylvania. The class mainly consists of second- and third-year science
and engineering students who have taken at least one year of introductory physics and the
associated math courses. Many have heard the buzz about synthetic biology, superresolution
microscopy, or something else, and they want a piece of the action.

Many recent articles stress that future breakthroughs in medicine and life science
will come from researchers with strong quantitative backgrounds, and with experience
at systems-level analysis. Answering this call, many textbooks on “Mathematical Biology,”
“Systems Biology,” “Bioinformatics,” and so on have appeared. Few of these, however, seem
to stress the importance of physical models. And yet there is something remarkably—
unreasonably—effective about physical models. This book attempts to show this using a
few case studies.

The book also embodies a few convictions, including1

• The study of living organisms is an inspiring context in which to learn many fundamental
physical ideas—even for physical-science students who don’t (or don’t yet) intend to study
biophysics further.

• The study of fundamental physical ideas sheds light on the design and functioning of living
organisms, and the instruments used to study them. It’s important even for life-science
students who don’t (or don’t yet) intend to study biophysics further.

1See also “To the Student.”
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In short, this is a book about how physical science and life science illuminate each other.

I’ve also come to believe that

• Whenever possible, we should try to relate our concepts to familiar experience.
• All science students need some intuitions about probability and inference, in order to

make sense of methods now in use in many fields. These include likelihood maximiza-
tion and Bayesian modeling. Other universal topics, often neglected in undergraduate
syllabi, include the notion of convolution, long-tail distributions, feedback control, and
the Poisson process (and other Markov processes).

• Algorithmic thinking is different from pencil-and-paper analysis. Many students have
not yet encountered it by this stage of their careers, yet it’s crucial to the daily practice
of almost every branch of science. Recent reports have commented on this disconnect
and recommended changes in curricula (e.g., Pevzner & Shamir, 2009; National Research
Council, 2003). The earlier students come to grips with this mode of thought, the better.

• Students need explicit discussions about Where Theories Come From, in the context of
concrete case studies.

This book is certainly not intended as a comprehensive survey of the enormous and
protean field of Biophysics. Instead, it’s intended to develop the skills and frameworks that
students need in many fields of science, engineering, and applied math, in the context of
understanding how living organisms manage a few of their remarkable abilities. I have tried
to tell a limited number of stories with sufficient detail to bring students to the point where
they can do research-level analysis for themselves. I have selected stories that seem to fit a
single narrative, and that seem to open the most doors to current work. I also tried to stick
with stories for which the student can actually do all the calculations, instead of resorting
to “Smith has shown . . . .”

Students in the course come from a wide range of majors, with a correspondingly wide
range of backgrounds. This can lead to some tricky, yet valuable, cross-cultural moments,
like the one in the epigraph to this section. I have found that a little bit of social engineering,
to bring together students with different strengths, can start the process of interdisciplinary
contact at the moment when it is most likely to become a habit.

Ways to use this book

Most chapters end with “Track 2” sections. Some of these contain material appropriate
for students with more advanced backgrounds. Others discuss topics that are at the un-
dergraduate level, but will not be needed later in the book. They can be discussed a la
carte, based on your and the students’ interests. The main, “Track 1,” sections do not
rely on any of this material. Also, the Instructor’s Guide contains many additional bibli-
ographic references, some of which could be helpful for starting projects based on primary
literature.

This book could serve as the basis of a course on the science underpinning contem-
porary biological physics. Or it can be used as a supplement in more specialized courses
on physics, biophysics, or several kinds of engineering or applied math. Although Track 1
is meant as an undergraduate course, it contains a lot of material not generally included in
undergraduate physics curricula. Thus, it could easily form the basis of a graduate course, if
you add all or part of Track 2, and perhaps some reading from your own specialty (or work
cited in the Instructor’s Guide).
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This book is not a sequel to my earlier one (Nelson, 2014). Indeed there is very little
overlap between these books, which partly explains why certain topics are not covered here.
Still other topics will appear in a forthcoming book on light, imaging, and vision. A few of
the many other recent books with overlapping goals are listed in “To the Student”; others
appear at the ends of chapters.

There are many ways to organize the material: by organism type, by length scale, and
so on. I have tried to arrange topics in a way that gradually builds up the framework needed
to understand an important and emblematic system in Chapter 11.

Computer-based assignments

The difference between a text without problems and a text

with problems is like the difference between learning to read a

language and learning to speak it.

—Freeman Dyson

All of the problems set in this book have been tested on real students. Many ask the student
to use a computer. One can learn some of the material without doing this, but I think it’s
important for students to learn how to write their own short codes, from scratch. It’s best
to do this not in the vacuum of a course dedicated to programming, but in the context
of some problems of independent scientific interest—for example, biophysics. The book’s
companion Web site features a collection of real experimental datasets to accompany the
homework problems. Many reports stress the importance of students working with such
data (for example, see National Research Council, 2003).

To do research, students need skills relevant for data visualization, simulation of ran-
dom variables, and handling of datasets, all of which are covered in this book’s problems.
Several general-purpose programming environments would work well for this, depending
on your own preference, for example, Mathematicar, MATLABr, Octave, Python, R, or Sage.
Some of these are free and open source. It’s hugely motivating when that beautiful fit to data
emerges, and important for students to have this experience early and often.

In my own course, many students arrive with no programming experience. A separate
Student’s Guide gives them some computer laboratory exercises and other suggestions for
how to get started. The Instructor’s Guide gives solutions to these exercises, and to the
Problems and Your Turn questions in this book. Keep in mind that programming is very
time consuming for beginners; you can probably only assign a few of the longer problems
in a semester, and your students may need lots of support.

Classroom demonstrations

One kind of experiential learning is almost unique to physical science classes: We bring a
piece of apparatus into the class and show the students some surprising real phenomenon—
not a simulation, not a metaphor. The Instructor’s Guide offers some suggestions for where
to give demonstrations.

New directions in education

Will life-science students really need this much background in physical science? Although
this is not a book about medicine per se, nevertheless many of its goals mesh with recent
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guidelines for the preparation of premedical students, and specifically for the revised MCAT
exam (American Association of Medical Colleges, 2014):2

1. “Achieving economies of time spent on science instruction would be facilitated by break-
ing down barriers among departments and fostering interdisciplinary approaches to
science education. Indeed, the need for increased scientific rigor and its relevance to
human biology is most likely to be met by more interdisciplinary courses.”

2. Premedical students should enter medical school able to

• “Apply quantitative reasoning and appropriate mathematics to describe or explain
phenomena in the natural world.”

• “Demonstrate understanding of the process of scientific inquiry, and explain how
scientific knowledge is discovered and validated,”as well as“knowledge of basic physical
and chemical principles and their applications to the understanding of living systems.”

• “Demonstrate knowledge of how biomolecules contribute to the structure and func-
tion of cells.”

• “Apply understanding of principles of how molecular and cell assemblies, organs, and
organisms develop structure and carry out function.”

• “Explain how organisms sense and control their internal environment and how they
respond to external change.”

3. At the next level, students in medical school need another set of core competencies,
including an understanding of technologies used in medicine.

4. Finally, practicing physicians need to explain to patients the role of complexity and
variability, and must be able to communicate approaches to quantitative evidence.

This book may be regarded as showing one model for how physical science and engineering
departments can address these goals in their course offerings.

Standard disclaimers

This is a textbook, not a monograph. Many fine points have been intentionally banished
to Track 2, to the Instructor’s guide, or even farther out into deep space. The experiments
described here were chosen simply because they illustrated points I needed to make. The
citation of original works is haphazard. No claim is made that anything in this book is
original. No attempt at historical completeness is implied.

2See also American Association of Medical Colleges / Howard Hughes Medical Institute, 2009. Similar competencies
are listed in the context of biology education in another recent report (American Association for the Advancement
of Science, 2011), for example, “apply concepts from other sciences to interpret biological phenomena,” “apply
physical laws to biological dynamics,” and “apply imaging technologies.”
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Prolog:
A Breakthrough on HIV

Los Alamos, 1994
Alan Perelson was frustrated. For some years, he, and many other researchers, had been
staring at an enigmatic graph (Figure 0.1). Like any graph, it consisted of dry, unemotional
squiggles. But like any graph, it also told a story.

The enigmatic feature of the graph was precisely what made HIV so dangerous: After a
brief spike, the concentration of virus particles in the blood fell to a low, steady level. Thus,
after a short, flu-like episode, the typical patient had no serious symptoms, but remained

Figure 0.1 [Sketch graph.] The time course of HIV infection, representing the progression of the disease as it was understood
in the early 1990s. After a brief, sharp peak, the concentration of virus particles in the blood (“viral load”) settled down to a low,
nearly steady level for up to ten years. During this period, the patient showed no symptoms. Ultimately, however, the viral load
increased and the symptoms of full AIDS appeared. [After Weiss, 1993.]
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Figure 0.2 [Metaphor.] Steady state in a leaky container. Inflow at a rate Qin replenishes the container, compensating outflow
at a rate Qout . If we observe that the volume V of liquid in the container is steady, we can conclude that Qout matches Qin, but we
can’t determine the actual value of either quantity without more information. In the analogy to viral dynamics, Qin corresponds
to the body’s production of virus particles and Qout to the immune system’s rate of virus clearance (see Chapter 1).

contagious, for up to ten years. Inevitably, however, the virus level eventually rose again, and
the patient died.

In the early 1990s, many researchers believed that these facts implied that HIV was a
slow virus, which remained in the body, nearly dormant, for years before rising sharply in
number. But how could such a long latency period be possible? What was happening during
those ten years? How could the patient’s immune system fight the virus effectively at first,
and then ultimately succumb?

Perelson and others had suspected for some time that maybe HIV was not slow or
dormant at all during the apparent latent period. He made an analogy to a physical system:
If we see a leaky container that nevertheless retains water at some constant level, we can
conclude that there must be water flowing into it (Figure 0.2). But we can’t determine how

fast water is flowing in. All we can say is that the rate of inflow equals the rate of outflow.
Both of those rates could be small—or both could be large. Applying this idea to HIV,
Perelson realized that, during the long period of low blood concentration, the virus might
actually be multiplying rapidly, but after the brief initial episode, it could be eliminated by
the body just as rapidly.

A real leaky container has another simple property reminiscent of the HIV data:
Because the outflow rate Qout(V ) increases as the volume of the water (and hence its
pressure at the exit point) goes up, the system can self-adjust to a steady state, no mat-
ter what inflow rate Qin we select. Similarly, different HIV-infected patients have quite
different steady levels of virus concentration, but all maintain that steady level for long
periods.
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Perelson was head of the Theoretical Biology and Biophysics Group at Los Alamos
National Laboratory. By 1994, he had already developed a number of elaborate mathe-
matical models in an attempt to see if they could describe clinical reality. But his models
were full of unknown parameters. The available data (Figure 0.1) didn’t help very much.
How could he make progress without some better knowledge of the underlying cellular
events giving rise to the aggregate behavior?

NewYork City, 1994
David Ho was puzzled. As the head of the Aaron Diamond AIDS Research Center, he had
the resources to conduct clinical trials. He also had access to the latest anti-HIV drugs and
had begun tests with ritonavir, a “protease inhibitor” designed to stop the replication of the
HIV virus.

Something strange was beginning to emerge from these trials: The effect of treatment
with ritonavir seemed to be a very sudden drop in the patient’s total number of virus
particles. This was a paradoxical result, because it was known that ritonavir by itself didn’t
destroy existing virus particles, but simply stopped the creation of new ones. If HIV were
really a slow virus, as many believed, wouldn’t it also stay around for a long time, even once
its replication was stopped? What was going on?

Also, it had been known for some time that patients treated with antiviral drugs got
much better, but only temporarily. After a few months, ritonavir and other such drugs always
lost their effectiveness. Some radically new viewpoint was needed.

Hilton Head Island, 1994
Perelson didn’t know about the new drugs; he just knew he needed quantitative data. At a
conference on HIV, he heard a talk by one of Ho’s colleagues, R. Koup, on a different topic.
Intrigued, he later phoned to discuss Koup’s work. The conversation turned to the surprising
results just starting to emerge with ritonavir. Koup said that the group was looking for a
collaborator to help make sense of the strange data they had been getting. Was Perelson
interested? He was.

Ho and his colleagues suspected that simply measuring viral populations before and
after a month of treatment (the usual practice at the time) was not showing enough detail.
The crucial measurement would be one that examined an asymptomatic patient, not one
with full AIDS, and that monitored the blood virus concentration every day after adminis-
tering the drug.

More clinical trials followed. Measurements from patient after patient told the same
story (Figure 0.3): Shutting down the replication of virus particles brought a hundredfold drop

in their population in 2–3 weeks.

Perelson and Ho were stunned. The rapid drop implied that the body was constantly
clearing the virus at a tremendous rate; in the language of Figure 0.2, Qout was huge. That
could only mean that,without the drug, the production rate Qin was also huge. Similar results
were soon obtained with several other types of antiviral drugs. The virus wasn’t dormant at
all; it was replicating like mad. Analysis of the data yielded a numerical value for Qout, as we’ll
see in Chapter 1. Using this measurement, the researchers estimated that the typical asymp-
tomatic patient’s body was actually making at least a billion new virus particles each day.3

As often happens,elsewhere another research group, led by George Shaw, independently
pursued a similar program. This group, too, contained an “outsider” to AIDS

3Later, more refined estimates showed that the average production rate was actually even larger than this initial
lower bound.
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Figure 0.3 [Experimental data with preliminary fit.] Virus concentration in a patient’s blood (“viral load”) after treatment

with a protease inhibitor, showing the rapid decline after treatment. In this semilog plot, the solid line shows the time course
corresponding to elimination of half the total viral population every 1.4 days. The dashed line highlights a deviation from this
behavior at early times (the “initial plateau”); see Chapter 1. [Data from Perelson, 2002; see Dataset 1.]

research, a mathematician named Martin Nowak. Both groups published their findings
simultaneously in Nature. The implications of this work were profound. Because the virus is
replicating so rapidly, it can easily mutate to find a form resistant to any given drug.4 Indeed,
as we’ll see later, the virus mutates often enough to generate every possible single-base
mutation every few hours. Hence, every infected patient already has some resistant mutant
viruses before the drug is even administered; in a couple of weeks, this strain takes over
and the patient is sick again. The same observation also goes to the heart of HIV’s ability to
evade total destruction by the body: It is constantly, furiously, playing cat-and-mouse with
the patient’s immune system.

But what if we simultaneously administer two antiviral drugs? It’s not so easy for a virus
to sample every possible pair of mutations, and harder still to get three or more. And in fact,
subsequent work showed that “cocktails” of three different drugs can halt the progression of
HIV infection, apparently indefinitely. The patients taking these drugs have not been cured;
they still carry low levels of the virus. But they are alive, thanks to the treatment.

The message
This book is about basic science. It’s not about AIDS, nor indeed is it directly about medicine
at all. But the story just recounted has some important lessons.

The two research groups mentioned above made significant progress against a terrible
disease. They did this by following some general steps:

1. Assemble (or join) an interdisciplinary team to look at the problem with different sets
of tools;

2. Apply simple physical metaphors (the leaky container of water) and the corresponding
disciplines (dynamical systems theory, an area of physics) to make a hypothesis; and

4Actually the fact of mutation had already been established a few years earlier. Prior to the experiments described
here, however, it was difficult to understand how mutation could lead to fast evolution.
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3. Perform experiments specifically designed to give new, quantitative data to support or
refute the hypothesis.

This strategy will continue to yield important results in the future.
The rest of the book will get a bit dry in places. There will be many abstract ideas.

But abstract ideas do matter when you understand them well enough to find their concrete
applications. In fact, sometimes their abstractness just reflects the fact that they are so
widely applicable: Good ideas can jump like wildfires from one discipline to another. Let’s
get started.
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First Steps

[Artist’s reconstructions based on structural data.] A human immunodeficiency virus

particle (virion), surrounded by its lipid membrane envelope. The envelope is studded
with gp120, the protein that recognizes human T cells. The envelope encloses several
enzymes (proteins that act as molecular machines), including HIV protease, reverse
transcriptase, and integrase. Two RNA strands carrying the genome of HIV are packaged
in a cone-shaped protein shell called the capsid. See also Media 1. [Courtesy David S

Goodsell.]
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11
Virus

Dynamics

We all know that Art is not truth. Art is a lie that makes us realize the truth.

—Pablo Picasso

1.1 First Signpost

The Prolog suggested a three-step procedure to make headway on a scientific problem
(see page 4). Unfortunately, the experiment that can be performed usually does not directly
yield the information we desire, and hence does not directly confirm or disprove our original
hypothesis. For example, this chapter will argue that testing the viral mutation hypothesis in
the Prolog actually requires information not directly visible in the data that were available
in 1995.

Thus, a fourth step is almost always needed:

4. Embody the physical metaphor (or physical model) in mathematical form, and
attempt to fit it to the experimental data.

In this statement, fit means “adjust one or more numbers appearing in the model.” For
each set of these fit parameter values that we choose, the model makes a prediction for
some experimentally measurable quantity, which we compare with actual observations. If
a successful fit can be found, then we may call the model “promising” and begin to draw
tentative conclusions from the parameter values that yield the best fit. This chapter will take
a closer look at the system discussed in the Prolog, illustrating how to construct a physical
model, express it in mathematical form, fit it to data, evaluate the adequacy of the fit, and
draw conclusions. The chapter will also get you started with some of the basic computer
skills needed to carry out these steps.
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